Structure and Properties of Multiwall Carbon Nanotubes/Polystyrene Composites Prepared via Coagulation Precipitation Technique

Author:

Mazov I. N.12,Kuznetsov V. L.12,Krasnikov D. V.2,Rudina N. A.1,Romanenko A. I.23,Anikeeva O. B.23,Suslyaev V. I.4,Korovin E. Yu.4,Zhuravlev V. A.4

Affiliation:

1. Department of Physical Methods of Investigations, Boreskov Institute of Catalysis, Novosibirsk, Russia

2. Physical Faculty, Novosibirsk State University, Novosibirsk 630090, Russia

3. Department of Thermodynamic Investigations, Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russia

4. Faculty of Radiophysics, National Research Tomsk State University, Tomsk 634050, Russia

Abstract

Coagulation technique was applied for preparation of multiwall carbon nanotube- (MWNT-)containing polystyrene (PSt) composite materials with different MWNT loading (0.5–10 wt.%). Scanning and transmission electron microscopies were used for investigation of the morphology and structure of produced composites. It was shown that synthesis of MWNT/PSt composites using coagulation technique allows one to obtain high dispersion degree of MWNT in the polymer matrix. According to microscopy data, composite powder consists of the polystyrene matrix forming spherical particles with diameter ca. 100–200 nm, and the surface of MWNT is strongly wetted by the polymer forming thin layer with 5–10 nm thickness. Electrical conductivity of MWNT/PSt composites was investigated using a four-probe technique. Observed electrical percolation threshold of composite materials is near to 10 wt.%, mainly due to the insulating polymer layer deposited on the surface of nanotubes. Electromagnetic response of prepared materials was investigated in broadband region (0.01–4 and 26–36 GHz). It was found that MWNT/PSt composites are almost radiotransparent for low frequency region and possess high absorbance of EM radiation at higher frequencies.

Funder

International Science and Technology Center

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3