Differential Regulation of the Immune System in Peripheral Blood Following Ischemic Stroke

Author:

Liu Wenhao1ORCID,Yang Xin-Zhuang2,Zhang Dingding2,He Xin1,Yu Qianlan1,Liu Xinquan1,Dai Yi1ORCID

Affiliation:

1. Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Abstract

AIM. Previous studies have provided insights into complex immune system changes caused by ischemic stroke (IS), while detailed reports are lacking especially in peripheral blood. Here, we sought to identify genetic biomarkers in immune system which significantly associated with the occurrence of IS and explore candidate drugs that can regulate the process. We also investigated whether gene expression alternation of immune genes contributed to differential distribution of immune cells in peripheral blood following IS. Method. 108 IS samples and 47 matched controls were obtained from the GEO database. Immune-related genes (IRGs) and their associated drugs were collected from the ImmPort and PharmGBK databases, respectively. Random forest (RF) regression and least absolute shrinkage and selection operator (LASSO) logistic regression were applied to identify immune-related genetic biomarkers (IRGBs) of IS, and accuracy was verified using neural network models. Finally, proportion changes of various immune cells in peripheral blood of IS patients were evaluated using CIBERSORT and xCell and correlation analyses were performed between IRGBs and differentially distributed immune cells. Results. A total of 537 genes were differentially expressed between IS and control samples. Four immune-related differential expressed genes identified by regression analysis presented strong predictive power ( AUC = 0.909 ) which we suggeseted them as immune-related genetic biomarkers (IRGBs). We also demonstrated six immune-related genes targeted by known drugs. In addition, post-IS immune system presented an increase in the proportion of innate immune cells and a decrease in adaptive immune cells in the peripheral circulation, and IRGBs showing significance were associated with this process.Conclusion. The study identified CARD11, ICAM2, VIM, and CD19 as immune-related genetic biomarkers of IS. Six immune-related DEGs targeted by known drugs were found and provide new candidate drug targets for modulating the post-IS immune system. The innate immune cells and adaptive immune cells are diversified in the post-IS immune system, and IRGBs might play important role during this process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3