An Analysis of the Operation Factors of Three PSO-GA-ED Meta-Heuristic Search Methods for Solving a Single-Objective Optimization Problem

Author:

Fozooni Ali1,Kamari Osman2,Pourtalebiyan Mostafa3,Gorgich Masoud4,Khalilzadeh Mohammad56,Valizadeh Amin7ORCID

Affiliation:

1. Foster School of Business, University of Washington, Seattle, WA 98105, USA

2. Department of Business Management, University of Human Development, Sulaymaniyah, Iraq

3. Department of Industrial Engineering, University of Science and Culture, Tehran, Iran

4. Department of Industrial Engineering, Velayat University, Iranshahr, Iran

5. CENTRUM Católica Graduate Business School, Lima, Peru

6. Pontificia Universidad Católica del Perú, Lima, Peru

7. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this study, we evaluate several nongradient (evolutionary) search strategies for minimizing mathematical function expressions. We developed and tested the genetic algorithms, particle swarm optimization, and differential evolution in order to assess their general efficacy in optimization of mathematical equations. A comparison is then made between the results and the efficiency, which is determined by the number of iterations, the observed accuracy, and the overall run time. Additionally, the optimization employs 12 functions from Easom, Holder table, Michalewicz, Ackley, Rastrigin, Rosen, Rosen Brock, Shubert, Sphere, Schaffer, Himmelblau’s, and Spring Force Vanderplaats. Furthermore, the crossover rate, mutation rate, and scaling factor are evaluated to determine the effectiveness of the following algorithms. According to the results of the comparison of optimization algorithms, the DE algorithm has the lowest time complexity of the others. Furthermore, GA demonstrated the greatest degree of temporal complexity. As a result, using the PSO method produces different results when repeating the same algorithm with low reliability in terms of locating the optimal location.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3