Improved ACD-Based Financial Trade Durations Prediction Leveraging LSTM Networks and Attention Mechanism

Author:

Shi Yong1234,Dai Wei123,Long Wen123ORCID,Li Bo123

Affiliation:

1. School of Economics and Management, University of Chinese Academy of Sciences, No. 80 of Zhongguancun East Street Haidian District, Beijing 100190, China

2. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, No. 80 of Zhongguancun East Street, Haidian District, Beijing 100190, China

3. Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, No. 80 of Zhongguancun, East Street, Haidian District, Beijing 100190, China

4. College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182, USA

Abstract

The liquidity risk factor of security market plays an important role in the formulation of trading strategies. A more liquid stock market means that the securities can be bought or sold more easily. As a sound indicator of market liquidity, the transaction duration is the focus of this study. We concentrate on estimating the probability density function p Δ t i + 1 | G i , where Δ t i + 1 represents the duration of the (i + 1)-th transaction and G i represents the historical information at the time when the (i + 1)-th transaction occurs. In this paper, we propose a new ultrahigh-frequency (UHF) duration modelling framework by utilizing long short-term memory (LSTM) networks to extend the conditional mean equation of classic autoregressive conditional duration (ACD) model while retaining the probabilistic inference ability. And then, the attention mechanism is leveraged to unveil the internal mechanism of the constructed model. In order to minimize the impact of manual parameter tuning, we adopt fixed hyperparameters during the training process. The experiments applied to a large-scale dataset prove the superiority of the proposed hybrid models. In the input sequence, the temporal positions which are more important for predicting the next duration can be efficiently highlighted via the added attention mechanism layer.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3