Experimental Aspects in the Vibration-Based Condition Monitoring of Large Hydrogenerators

Author:

Brito Junior Geraldo Carvalho12ORCID,Machado Roberto Dalledone2,Chaves Neto Anselmo2,Martini Mateus Feiertag1

Affiliation:

1. Center for Engineering and Exact Sciences, Western Paraná State University (UNIOESTE), Foz do Iguaçu, PR, Brazil

2. Numerical Methods for Engineering Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil

Abstract

Based on experimental observations on a set of twenty 700 MW hydrogenerators, compiled from several technical reports issued over the last three decades and collected from the reprocessing of the vibration signals recorded during the last commissioning tests, this paper shows that the accurate determination of the journal bearings operating conditions may be a difficult task. It shows that the outsize bearing brackets of large hydrogenerators are subject to substantial dimensional changes caused by external agents, like the generator electromagnetic field and the bearing cooling water temperature. It also shows that the shaft eccentricity of a journal bearing of a healthy large hydrogenerator, operating in steady-state condition, may experience unpredictable, sudden, and significant changes without apparent reasons. Some of these phenomena are reproduced in ordinary commissioning tests or may be noticed even during normal operation, while others are rarely observed or are only detected through special tests. These phenomena modify journal bearings stiffness and damping, changing the hydrogenerator dynamics, creating discrepancies between theoretical predictions and experimental measurements, and making damage detection and diagnostics difficult. Therefore, these phenomena must be analyzed and considered in the application of vibration-based condition monitoring to these rotating machines.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3