A Midcourse Guidance Method Combined with Trajectory Prediction for Antinear-Space-Gliding Vehicles

Author:

Wan JiaQing12ORCID,Zhang Qian12ORCID,Zhang Hao12ORCID,Liu JiaNing12ORCID

Affiliation:

1. Northwestern Polytechnical University, 710072 Xi’an, China

2. Shaanxi Key Laboratory of Aerospace Flight Vehicle Technology, Xi’an 710072, China

Abstract

Near-space-gliding vehicles have variable maneuver modes and dramatic changes in their ballistic parameters, which lead to a need to accurately predict an intercept point based on predictions of their trajectories. First, a trajectory prediction method builds a set of time-varying maneuver models based on flight missions combined with an adaptive grid to infer maneuver modes. An interactive multiple-model method of variable structure is proposed to identify the characteristics of the maneuver mode by introducing a fading factor and the modified Markov probability transfer matrix and then predict the trajectory through numerical integration. In the midcourse guidance method, the prediction of the target trajectory is introduced, and the zero-control interception manifold with intersection angle constraints is designed as the midcourse guidance terminal constraint. For the calculation of the starting time of the boost phase, the optimization solution satisfying the remaining flight time constraint is realized based on the Newton-Raphson iterative method. The analytical expression of a guidance command based on zero-error-miss/zero-error-velocity is established on the basis of the optimal control theory to provide an optimal flight path guiding an NSGV fly toward a point of interception. The simulation results show that the trajectory-prediction method has high prediction accuracy and strong convergency for typical maneuver modes, and the proposed midcourse guidance algorithm meets the requirements of the zero-effort intercept manifold with the intersection angle constraints, which is of important theoretical significance and acts as a reference value for intercepting high-velocity maneuver targets.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3