Traumatic Brain Magnetic Resonance Imaging Feature Extraction Based on Variable Model Algorithm in Stroke Examination

Author:

Wu Zhenghong1ORCID,Wu Dongqiu2ORCID,Yang Weiwei3ORCID,Wan Bing1ORCID,Liu Sibin1ORCID

Affiliation:

1. Department of Radiology, Jingzhou Central Hospital, Jingzhou 434020, Hubei, China

2. Department of Function, Jingzhou Chest Hospital, Jingzhou 434020, Hubei, China

3. Department of Pulmonary and Critical Care Medicine, Jingzhou Chest Hospital, Jingzhou 434020, Hubei, China

Abstract

The purpose of this study was to explore the diagnostic value of different sequence scanning of nonparametric variable model-based cranial magnetic resonance imaging (MRI) for ischemic stroke. A histogram analysis-based nonparametric variable model was proposed first, which was compared with the parametric deformation (PD) model and geometric deformation (GD) model. Then, 116 patients with acute ischemic stroke were selected as the research subjects. Routine MRI (T2WI, T1WI, FLAIR, DWI, SWI, and 3D TOF MRA) and MR SCALE-PWI were performed. The results showed that the nonparametric variable model algorithm was relatively complete in the actual segmentation results of MRI images, and the display clarity of lesions was better than PD and GD algorithms. The diagnostic sensitivity, specificity, and overall performance of the variable model algorithm were significantly higher than those of the other two algorithms ( P < 0.05 ). According to ROC curve analysis, the AUC areas of DWI, SWI, 3D TOF MRA, and MR SCALE-PWI for the diagnosis of ischemic penumbra were 0.793, 0.825, 0.871, and 0.933, respectively. In summary, the segmentation results of MRI images by the nonparametric variable model based on histogram analysis were relatively complete, and the clarity of lesions was better than that of the traditional model. MRI images can effectively identify the occurrence of ischemic stroke. Moreover, MR SCALE-PWI had a good early identification effect on ischemic penumbra, which can reduce unnecessary treatment for patients.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3