Affiliation:
1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
Abstract
Fault detection for turbine engine components is becoming increasingly important for the efficient running of commercial aircraft. Recently, the support vector machine (SVM) with kernel function is the most popular technique for monitoring nonlinear processes, which can better handle the nonlinear representation of fault detection of turbine engine disk. In this paper, an adaptive weighted one-class SVM-based fault detection method coupled with incremental and decremental strategy is proposed, which can efficiently solve the time series data stream drifting problem. To update the efficient training of the fault detection model, the incremental strategy based on the new incoming data and support vectors is proposed. The weight of the training sample is updated by the variations of the decision boundaries. Meanwhile, to increase the calculating speed of the fault detection model and reduce the redundant data, the decremental strategy based on the k-nearest neighbor (KNN) is adopted. Based on time series data stream, numerical simulations are conducted and the results validated the superiority of the proposed approach in terms of both the detection performance and robustness.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献