Fault Detection for Turbine Engine Disk Based on Adaptive Weighted One-Class Support Vector Machine

Author:

Chen Jiusheng1ORCID,Xu Xingkai1,Zhang Xiaoyu1ORCID

Affiliation:

1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Abstract

Fault detection for turbine engine components is becoming increasingly important for the efficient running of commercial aircraft. Recently, the support vector machine (SVM) with kernel function is the most popular technique for monitoring nonlinear processes, which can better handle the nonlinear representation of fault detection of turbine engine disk. In this paper, an adaptive weighted one-class SVM-based fault detection method coupled with incremental and decremental strategy is proposed, which can efficiently solve the time series data stream drifting problem. To update the efficient training of the fault detection model, the incremental strategy based on the new incoming data and support vectors is proposed. The weight of the training sample is updated by the variations of the decision boundaries. Meanwhile, to increase the calculating speed of the fault detection model and reduce the redundant data, the decremental strategy based on the k-nearest neighbor (KNN) is adopted. Based on time series data stream, numerical simulations are conducted and the results validated the superiority of the proposed approach in terms of both the detection performance and robustness.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3