Affiliation:
1. Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
Abstract
Objective. A sensitive and specific multiplex fluorescence rapid detection method was established for simultaneous detection of SARS-CoV-2, influenza A virus, and influenza B virus in a self-made device within 30 min, with a minimum detection limit of 200 copies/mL. Methods. Based on the genome sequences of SARS-CoV-2, influenza A virus (FluA), and influenza B virus (FluB) with reference to the Chinese Center for Disease Control and Prevention and related literature, specific primers were designed, and a multiplex fluorescent PCR system was established. The simultaneous and rapid detection of SARS-CoV-2, FluA, and FluB was achieved by optimizing the concentrations of Taq DNA polymerase as well as primers, probes, and Mg2+. The minimum detection limits of the nucleic acid rapid detection system for SARS-CoV-2, FluA, and FluB were evaluated. Results. By optimizing the amplification system, the N enzyme with the best amplification performance was selected, and the optimal concentration of Mg2+ in the multiamplification system was 3 mmol/L; the final concentrations of SARS-CoV-2 NP probe and primer were 0.15 μmol/L and 0.2 μmol/L, respectively; the final concentrations of SARS-CoV-2 ORF probe and primer were both 0.15 μmol/L; the final concentrations of FluA probe and primer were 0.2 μmol/L and 0.3 μmol/L, respectively; the final concentrations of FluB probe and primer were 0.15 μmol/L and 0.25 μmol/L, respectively. Conclusion. A multiplex real-time quantitative fluorescence RT-PCR system for three respiratory viruses of SARS-CoV-2, FluA, and FluB was established with a high amplification efficiency and sensitivity reaching 200 copies/mL for all samples. Combined with the automated microfluidic nucleic acid detection system, the system can achieve rapid detection in 30 minutes.
Funder
National High Level Hospital Clinical Research Funding
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献