Experimental Study on the Brittle-Ductile Response of a Heterogeneous Soft Coal Rock Mass under Multifactor Coupling

Author:

Yu Weijian12ORCID,Wu Genshui1ORCID,An Baifu2,Wang Ping2

Affiliation:

1. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

2. Hunan Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

After a gas drainage event causes different degrees of initial porosity in the coal seam, the heterogeneity of the coal mass becomes much more obvious. In this paper, soft coal testing samples with different degrees of heterogeneity were prepared first by a new special experimental research method using hydrogen peroxide in an alkaline medium to generate oxygen. Then, a series of mechanical tests on the soft coal mass samples were carried out under multiple factor coupling conditions of different heterogeneities and confining pressures. The results show that with a low strength, the ductility failure characteristic and a kind of rheology similar to that for soft rock flow were reflected for the soft coal; i.e., the stress-strain curve of the coal mass had no apparent peak strain and residual strength. An interesting phenomenon was found in the test process: there was an upwardly convex critical phase, called the brittle-ductile failure transition critical phase, for the heterogeneous soft coal mass between the initial elastic compression phase and the ductile failure transition phase in the stress-strain curve of the coal mass. An evolution of the brittle-ductile modulus coefficient of the soft coal was developed to analyze the effect of the internal factor (degree of heterogeneity) and external factors (confining pressure) on the transition state of the brittle-ductile failure of soft coal. Further analysis shows that the internal factor (heterogeneity) was also one of the essential factors causing the brittle-ductile transition of soft coal.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3