Grid-Based Anomaly Detection of Freight Vehicle Trajectory considering Local Temporal Window

Author:

Zhang Zixian12,Qi Geqi123ORCID,Ceder Avishai (Avi)14,Guan Wei12ORCID,Guo Rongge12,Wei Zhenlin12

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

3. Beijing Research Center of Urban Traffic Information Sensing and Service Technologies, Beijing Jiaotong University, Beijing 100044, China

4. Faculty of Civil and Environmental Engineering and the Transportation Research Institute, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel

Abstract

The security travel of freight vehicles is of high societal concern and is the key issue for urban managers to effectively supervise and assess the possible social security risks. With continuous improvements in motion-based technology, the trajectories of freight vehicles are readily available, whose unusual changes may indicate hidden urban risks. Moreover, the increasing high spatial and temporal resolution of trajectories provides the opportunity for the real-time recognition of the abnormal or risky vehicle motion. However, the existing researches mainly focus on the spatial anomaly detection, and there are few researches on the real-time temporal anomaly detection. In this paper, a grid-based algorithm, which combines the spatial and temporal anomaly detection, is proposed for tracing the risk of urban freight vehicles trajectory by considering local temporal window. The travel time probability distribution of vehicle historical trajectory is analyzed to meet the time complexity requirements of real-time anomaly calculation. The developed methodology is applied to a case study in Beijing to demonstrate its accuracy and effectiveness.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3