Effect of Inclined Magnetic Field on the Entropy Generation in an Annulus Filled with NEPCM Suspension

Author:

Seyyedi Seyyed Masoud1ORCID,Hashemi-Tilehnoee M.1ORCID,Sharifpur M.234ORCID

Affiliation:

1. Department of Mechanical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

2. Department of Mechanical Engineering, University of Science and Culture, Tehran, Iran

3. Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa

4. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Abstract

The encapsulation technique of phase change materials in the nanodimension is an innovative approach to improve the heat transfer capability and solve the issues of corrosion during the melting process. This new type of nanoparticle is suspended in base fluids call NEPCMs, nanoencapsulated phase change materials. The goal of this work is to analyze the impacts of pertinent parameters on the free convection and entropy generation in an elliptical-shaped enclosure filled with NEPCMs by considering the effect of an inclined magnetic field. To reach the goal, the governing equations (energy, momentum, and mass conservation) are solved numerically by CVFEM. Currently, to overcome the low heat transfer problem of phase change material, the NEPCM suspension is used for industrial applications. Validation of results shows that they are acceptable. The results reveal that the values of N u ave descend with ascending Ha while N gen has a maximum at Ha = 16 . Also, the value of N T , MF increases with ascending Ha . The values of N u ave and N gen depend on nondimensional fusion temperature where good performance is seen in the range of 0.35 < θ f < 0.6 . Also, Nu ave increases 19.9% and ECOP increases 28.8% whereas N gen descends 6.9% when ϕ ascends from 0 to 0.06 at θ f = 0.5 . Nu ave decreases 4.95% while N gen increases by 8.65% when Ste increases from 0.2 to 0.7 at θ f = 0.35 .

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3