Fully Isolated Quad-Port Electric Energy Routing Converter with Medium- and High-Voltage Grid Connection Capability

Author:

Sha Guanglin1,Duan Qing1,Sheng Wanxing1,Zhang Yao1,Ma Chunyan1,Zhao Caihong1,Zhao Yan1,Liu Zhe2,Teng Jiaxun1ORCID

Affiliation:

1. China Electric Power Research Institute, Haidian District, Beijing 100192, China

2. State Grid Shanghai Electric Power Research Institute, Handan Road No. 171, Shanghai 200437, China

Abstract

Aiming at the demand for medium- and high-voltage port access capability in energy router, this study proposes a quad-port DC/DC converter topology scheme based on modular multilevel converter (QP-M2DC). Compared with the traditional multiterminal energy routing converter, it has the advantages of high modularity, strong flexibility, and high power density. In addition, for the modular structure on the medium- and high-voltage sides, this study proposes a narrow phase-shift cyclic modulation strategy, which reduces the system need for voltage balance control and simplifies the overall system control. This study comprehensively introduces and analyses the QP-M2DC topology, working principle, high-frequency link equivalent, and power characteristics, then establishes an equivalent model of system control, and proposes a control scheme for a multiterminal energy routing converter. Finally, a simulation model of the system is established through PLECS, and the simulation results show that in such a narrow phase-shift modulation strategy, the proposed topology can have stable operation in a variety of patterns, reduce the capacitance, and achieve better voltage balance at the same time. The experimental results show the converter efficiency of up to 97.8%. It further shows the superiority of the proposed topology structure and the correctness and effectiveness of the proposed control schemes.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3