Affiliation:
1. China Electric Power Research Institute, Haidian District, Beijing 100192, China
2. State Grid Shanghai Electric Power Research Institute, Handan Road No. 171, Shanghai 200437, China
Abstract
Aiming at the demand for medium- and high-voltage port access capability in energy router, this study proposes a quad-port DC/DC converter topology scheme based on modular multilevel converter (QP-M2DC). Compared with the traditional multiterminal energy routing converter, it has the advantages of high modularity, strong flexibility, and high power density. In addition, for the modular structure on the medium- and high-voltage sides, this study proposes a narrow phase-shift cyclic modulation strategy, which reduces the system need for voltage balance control and simplifies the overall system control. This study comprehensively introduces and analyses the QP-M2DC topology, working principle, high-frequency link equivalent, and power characteristics, then establishes an equivalent model of system control, and proposes a control scheme for a multiterminal energy routing converter. Finally, a simulation model of the system is established through PLECS, and the simulation results show that in such a narrow phase-shift modulation strategy, the proposed topology can have stable operation in a variety of patterns, reduce the capacitance, and achieve better voltage balance at the same time. The experimental results show the converter efficiency of up to 97.8%. It further shows the superiority of the proposed topology structure and the correctness and effectiveness of the proposed control schemes.
Funder
State Grid Corporation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering