Performance Improvement for Single-Photon LiDAR with Dead Time Selection

Author:

Feng Lei1ORCID,Wang Fenglin1ORCID,An Meng2ORCID,Zhang Qiang2ORCID

Affiliation:

1. Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China

2. Institute of Spacecraft System Engineering CAST, Beijing 100094, China

Abstract

Compared with the impulse LiDAR, the single-photon LiDAR has higher measurement sensitivity in the prominent feature, especially for space-based long-distance imaging. The distance measurement and the detection probability are the critical performance for LiDAR. The ranging of single-photon LiDAR is mainly different from the photon ranging of pulsed LiDAR. Dead time has a significant effect on distance measurement accuracy and detection probability, which are key parameters for detectors when implementing sound control. Therefore, the model of detector dead time, measurement accuracy, and detection probability should be established, and simulation results that meet application requirements should be achieved. Based on the single-photon ranging theory, the dead time, measurement accuracy, and detection probability model of single-photon LiDAR are studied. Furthermore, the systematic simulation of different contrasts is carried out according to the model. The simulation results demonstrate that the model can accurately perform the relationship between dead time and single-photon LiDAR system parameters. The research results can prove the design and verification of single-photon LiDAR dead time.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3