SHPB Test and Microstructure Analysis on Ready-Mixed Concrete in Uniaxial Load and Passive Confining Pressure States

Author:

Zhang Jing-shuang12ORCID,Duan Xue-lei12ORCID,Yang Zi-yan12

Affiliation:

1. Engineering Research Center of Underground Mine Construction, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Abstract

Ready-mixed concrete has been used as a support in mine roadways, where the impact load of blasting excavation can cause damage to the concrete support of the roadway. However, limited studies are available on the effect of water content, storage period, and impact pressure on dynamic mechanical properties of ready-mixed concrete in uniaxial load and passive confining pressure states. To investigate the effect of water contents (0%, 1.0%, 1.5%, and 2.0% by mass of dry sand), storage periods (0 d, 3 d, 7 d, 15 d, 20 d, and 30 d), and impact pressures (0.6 MPa and 0.9 MPa) on dynamic mechanical properties of ready-mixed concrete in uniaxial load and passive confining pressure states, the dynamic compression test using split Hopkinson pressure bar (SHPB) has been carried out. In addition, the microscopic test based on the scanning electron microscope (SEM) is conducted to analyze the effect of water content and storage period on the microstructure of ready-mixed concrete. The experimental results show that under the conditions of uniaxial load and passive confining pressure, the dynamic compressive strength of ready-mixed concrete decreases with the increase of water content and storage period but increases with the increase of impact pressure. At the same impact pressure, the dynamic compressive strength in passive confining pressure state is larger than that in uniaxial load state. The dynamic stress-strain curves of ready-mixed concrete in uniaxial load and passive confining pressure states can be divided into three stages: elastic stage, plastic stage, and failure stage. The peak strain increases with increasing impact pressure, and the peak strain in passive confining pressure state is more than that in uniaxial load state. The degree of damage for ready-mixed concrete specimens increases with the increase of the storage period and water content; however, the damage of specimens in passive confining pressure state is less than that of specimens in uniaxial load state. Meanwhile, an analysis to the microstructural mechanism of water content and storage period inside of ready-mixed concrete has been performed.

Funder

University Natural Science Research Project of Anhui Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3