Bta-miR-124a Affects Lipid Metabolism by Regulating PECR Gene

Author:

Shen Binglei12ORCID,Yang Zhuonina1ORCID,Han Shuo1,Zou Ziwen1,Liu Juan1,Nie Lian1,Dong Wentao1,Li E.1,Liu Shengjun1,Zhao Zhihui3,Wu Rui12ORCID

Affiliation:

1. College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, 163319, Heilongjiang Daqing, China

2. Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, 163319, Heilongjiang, China

3. College of Agricultural, Guangdong Ocean University, 524088, Zhanjiang, China

Abstract

According to our previous studies, bta-miR-124a was differentially expressed in breast tissue between high-fat and low-fat dairy cows. However, the function of bta-miR-124a in lipid metabolism of dairy cows and the identification of its target genes have not been reported. Therefore, this study will identify the target gene of bta-miR-124a and explore its role in the regulation of milk lipid metabolism. First, preliminary bioinformatics prediction of bta-miR-124a candidate target genes was performed, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze relative expression changes of bta-miR-124a and its candidate target genes and the expression level of the downstream gene of the target gene in the lipid metabolism signaling pathway in dairy mammary epithelial cell lines (Mac-T), using the dual luciferase reporter system for the identification of the targeting relationship between bta-miR-124a and the candidate target gene. Then, the effect of transfection of bta-miR-124a mimics and inhibitors on triglyceride (TG) and free fatty acid (FFA) levels was analyzed. The results indicate that bta-miR-124a directly interacts with the 3′-untranslated region of peroxisomal trans-2-enoyl-CoA reductase (PECR) to downregulate its expression in Mac-T cells. Further, bta-mir-124a regulates the expression of PECR and the downstream gene extension of very long chain fatty acid protein 2 (ELOVL2) through an unsaturated fatty acid biosynthesis signaling pathway. In conclusion, bta-miR-124a is involved in lipid metabolism by directly downregulating the PECR gene and affecting the expression of the downstream gene ELOVL2 and regulates the content of some key secretory elements such as TG and FFA. The function of bta-miR-124a has a certain effect on the synthesis and secretion of milk fat in the mammary epithelial cells of dairy cows.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3