Deployment and Operation of Battery Swapping Stations for Electric Two-Wheelers Based on Machine Learning

Author:

Feng Yu1,Lu Xiaochun1ORCID

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

Abstract

Battery swapping stations effectively address the challenges of long charging times, lack of charging stations, and safety hazards for electric two-wheelers. With the rapid development of shared electric bicycles and takeaways, the scale of electric two-wheeler users is expanding while generating a huge demand for battery swapping. The research on the planning and operation of battery swapping stations (BSSs) for electric two-wheelers has yet to be widely discussed. This study developed a data-driven optimization model based on machine learning algorithms using Beijing’s battery swapping stations and point of interest (POI) dataset. First, through the spatial features of BSS analyzed by ArcGIS, we found that the coverage of BSSs was mainly concentrated within the fifth ring road, and the utilization rate was unbalanced. Then, on a 3000 m grid scale, a prediction model of BSS quantity with random forest, support vector regression, and gradient-boosting decision tree algorithm was built. The final stacking model was constructed by strengthening three single models with an accuracy of 86.21%. Compared with the original BSSs layout, the machine-learning algorithm proposed in this study can cover more factors and avoid the subjectivity of site selection. Finally, the queuing model for BSSs based on the Monte Carlo simulation was proposed. Through two scenarios, we found that the key parameters m (the number of charging slots) and λ (the user arrival rate) were influential to the outputs of service capability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3