Anti-CD44 and EGFR Dual-Targeted Solid Lipid Nanoparticles for Delivery of Doxorubicin to Triple-Negative Breast Cancer Cell Line: Preparation, Statistical Optimization, and In Vitro Characterization

Author:

Darabi Farnosh1ORCID,Saidijam Massoud1ORCID,Nouri Fatemeh1ORCID,Mahjub Reza2ORCID,Soleimani Meysam1ORCID

Affiliation:

1. Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

2. Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background. Despite being more aggressive than other types of breast cancer, there is no suitable treatment for triple-negative breast cancer (TNBC). Here, we designed doxorubicin-containing solid lipid nanoparticles (SLNs) decorated with anti-EGFR/CD44 dual-RNA aptamers, which are overexpressed in TNBC. For more efficiency in the nuclear delivery of doxorubicin, dexamethasone (Dexa) was chemically attached to the surface of nanoparticles. Methods. To prepare the cationic SLNs, 6-lauroxyhexyl BOC-ornithine (LHON) was synthesized and was chemically attached to dexamethasone to form Dexa-LHON complexes. The doxorubicin-containing SLNs were prepared via double emulsification ( w / o / w ) and the solvent evaporation technique. The preparation of SLNs was statistically optimized using the central composite response surface methodology. Independent factors were the GMS/lecithin concentration ratio and the amount of Tween 80, while responses considered were particle size, polydispersity index, and entrapment efficiency of the nanoparticles. The optimized nanoparticles were studied morphologically using transmission electron microscopy, and in vitro release of doxorubicin from nanoparticles was studied in phosphate-buffered saline. Then, the designated aptamers were attached to the surface of nanoparticles using electrostatic interactions, and their cytotoxicity was assessed in vitro. Results. The size, PDI, zeta potential, EE%, and LE% of the prepared nanoparticles were 101 ± 12.6 nm , 0.341 ± 0.005 , + 13.6 ± 1.83 mV , 69.98 ± 7.54 % , and 10.2 ± 1.06 % , respectively. TEM images revealed spherical nanoparticles with no sign of aggregation. In vitro release study exhibited that 96.1 ± 1.97 % of doxorubicin was released within 48 h of incubation. The electrostatic attachment of the designated aptamers to the nanoparticles’ surface was confirmed by reducing the zeta potential to 15.6 ± 2.07 mV . The in vitro experiments revealed that the SLNs/DOX/Dexa/CD44 or EGFR aptamers were substantially more successful than SLNs/DOX/Dexa at inhibiting cell proliferation. Using the MDA-MB-468 cell line, we discovered that SLN/DOX/Dexa/CD44/EGFR aptamers were more effective than other constructs in inhibiting cell proliferation ( p < 0.001 ). The reduction of cell viability using this construct suggests that targeting numerous proliferation pathways is effective. Conclusion. Overall, the finding of this investigation suggested that SLNs/DOX/Dexa/CD44/EGFR could be a promising new enhanced anticancer delivery system and deserved further preclinical consideration.

Funder

Hamadan University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3