Mechanism of tiron as scavenger of superoxide ions and free electrons

Author:

Taiwo Fatai A.1

Affiliation:

1. Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK

Abstract

Sodium 4,5-dihydroxybenzene-1,3-disulfonate (tiron) has been reported to be an efficient chelator of certain metal ions, and a substrate in several enzyme reactions. Its small size facilitates cell entry and therefore modulates intracellular electron transfer reactions as an antioxidant by scavenging free radicals. Its reduction by electrochemical and enzymatic methods gives identical products; a semiquinone detectable by EPR spectroscopy. In a test of its use as a spin trap, in comparison with DMPO, tiron does not form a molecular spin-adduct but proves more functional as an electron trap. Electron addition to tiron is more facile than reduction of dioxygen as observed by the non-formation of DMPO-OOH spin-adduct in the system XO/HPX/O2/DMPO/tiron. Rather, it is the tiron semiquinone radical which is formed quantitatively with increasing concentration of hypoxanthine independent of oxygen concentration. These results offer explanation for the action of tiron and its suitability for measuring electron release in hypoxic conditions, and also for mitigating redox-induced toxicity in drug regimes by acting as an electron scavenger.

Publisher

Hindawi Limited

Subject

Spectroscopy

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3