Green Synthesis of Nanostructure CeO2 Using Tea Extract: Characterization and Adsorption of Dye from Aqueous Phase

Author:

Liu Chengshun123ORCID,Liu Xiyao1,Wu Yilin3,Chen Zhuotong1,Wu Zhuanrong4,Wang Shumao5ORCID,Han Hua1,Xie Zhenbang1,Wang Yixuan1,Ko Tzu-Hsing1ORCID

Affiliation:

1. Fujian Provincial University Key Laboratory of Green Energy and Environment Catalysts, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian 352100, China

2. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

3. University of Chinese Academy of Sciences, Beijing, China

4. College of Horticulture and Forestry Sciences, Huazhong Agriculture University, Wuhan, Hubei, China

5. Institute of Tea Science, Zhejiang University, Hangzhou, Zhejiang, China

Abstract

Nanostructure CeO2 powders were synthesized using tea waste extract as gel precursor. The as-prepared samples were characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Based on the TGA/DTG analysis, the intermediates of cerium chloride hydrates (CeCl3.4H2O and CeCl3.H2O) and cerium anhydrous (CeCl3) were produced, and the formation temperature of CeO2 was estimated to be 773 K. The cubic fluorite structure of CeO2 was detected to be the predominant species and was completely formed at the calcination temperature of 773K–1073 K with a crystal size between 8.8 and 11.4 nm based on the XRD measurement. Moreover, the main chemical state of ceria on the surface of the synthesized samples was confirmed to be tetravalent ceria by XPS. All samples show a strong Raman signal at a well-defined chemical shift of 463 cm−1 and a significant symmetry feature was observed, suggesting that the tetravalent ceria is the dominant species throughout the bulk sample. All the synthesized CeO2 calcined at different temperatures showed higher adsorption efficiency for Congo red (CR) compared with commercial CeO2. The adsorption efficiency maintained a steady state of more than 95% when the concentration of CR and adsorption temperature were varied in this study. The kinetic analysis showed that the second-order model was the appropriate model to interpret the adsorption behavior of synthesized CeO2. The calculated adsorption capacity derived from the second-order model is in good agreement with the experimental data. The isotherm analysis revealed that the Freundlich and D-R models fit well for the synthesized CeO2 and represent physisorption with a multilayer mechanism. The thermodynamic parameters, including the changes in Gibb’s free energy, enthalpy, and entropy, suggested that the adsorption of CR on the synthesized CeO2 sample was a spontaneous and endothermic process.

Funder

Scientific Research Foundation of Ningde Normal University

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3