Suppression of GCH1 Sensitizes Ovarian Cancer and Breast Cancer to PARP Inhibitor

Author:

Wang Siyuan12ORCID,Xia Yu12ORCID,Huang Pu12ORCID,Xu Cheng12ORCID,Qian Yiyu12ORCID,Fang Tian12ORCID,Gao Qinglei12ORCID

Affiliation:

1. Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China

2. Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Background. Breast and ovarian cancers are common malignancies among women, contributing to a significant disease burden, and are characterized by a high level of genomic instability, owing to the failure of homologous recombination repair (HRR). Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) could elicit the synthetic lethal effect of tumor cells in patients with homologous recombination deficiency, ultimately achieving a favorable clinical benefit. However, primary and acquired resistance remain the greatest hurdle, limiting the efficacy of PARP inhibitors; thus, strategies conferring or augmenting tumor cell sensitivity to PARP inhibitors are urgently required. Methods. Our RNA-seq data of niraparib-treated and -untreated tumor cells were analyzed by R language. Gene Set Enrichment Analysis (GSEA) was applied to assess the biological functions of GTP cyclohydrolase 1 (GCH1). Quantitative real-time PCR, Western blotting, and immunofluorescence were applied to confirm the upregulation of GCH1 upon niraparib treatment at transcriptional and translational levels. Immunohistochemistry of patient-derived xenograft (PDX)-derived tissue sections further validated that niraparib increased GCH1 expression. Tumor cell apoptosis was detected by flow cytometry, while the superiority of the combination strategy was confirmed in the PDX model. Results. The expression of GCH1 was aberrantly enriched in breast and ovarian cancers and increased after niraparib treatment via JAK-STAT signaling. GCH1 was also demonstrated to be associated with the HRR pathway. Subsequently, the enhancement of the tumor-killing effect of PARP inhibitors induced by GCH1 suppression using siRNA and GCH1 inhibitor was validated by flow cytometry in vitro. Finally, using the PDX model, we further demonstrated that GCH1 inhibitors markedly potentiated PARP inhibitors’ antitumor efficacy in vivo. Conclusion. Our results illustrated that PARP inhibitors promote GCH1 expression via the JAK-STAT pathway. We also elucidated the potential relationship between GCH1 and the homologous recombination repair pathway and proposed a combination regimen of GCH1 suppression with PARP inhibitors in breast and ovarian cancers.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3