Towards Privacy Preserving IoT Environments: A Survey

Author:

Seliem Mohamed1ORCID,Elgazzar Khalid1,Khalil Kasem1

Affiliation:

1. Centre for Advanced Computer Studies (CACS), University of Louisiana at Lafayette, LA 70503, USA

Abstract

The Internet of Things (IoT) is a network of Internet-enabled devices that can sense, communicate, and react to changes in their environment. Billions of these computing devices are connected to the Internet to exchange data between themselves and/or their infrastructure. IoT promises to enable a plethora of smart services in almost every aspect of our daily interactions and improve the overall quality of life. However, with the increasing wide adoption of IoT, come significant privacy concerns to lose control of how our data is collected and shared with others. As such, privacy is a core requirement in any IoT ecosystem and is a major concern that inhibits its widespread user adoption. The ultimate source of user discomfort is the lack of control over personal raw data that is directly streamed from sensors to the outside world. In this survey, we review existing research and proposed solutions to rising privacy concerns from a multipoint of view to identify the risks and mitigations. First, we provide an evaluation of privacy issues and concerns in IoT systems due to resource constraints. Second, we describe the proposed IoT solutions that embrace a variety of privacy concerns such as identification, tracking, monitoring, and profiling. Lastly, we discuss the mechanisms and architectures for protecting IoT data in case of mobility at the device layer, infrastructure/platform layer, and application layer.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fusion of deep belief network and SVM regression for intelligence of urban traffic control system;The Journal of Supercomputing;2024-08-13

2. Introducing Security Mechanisms in OpenFog-Compliant Smart Buildings;Electronics;2024-07-23

3. IoT convergence with machine learning & blockchain: A review;Internet of Things;2024-07

4. Efficient Pseudo Random Number Generator (PRNG) Design on FPGA;2024 IEEE 17th Dallas Circuits and Systems Conference (DCAS);2024-04-19

5. An Efficient Hardware Design of CoAP Protocol for The Internet of Things;2024 IEEE 17th Dallas Circuits and Systems Conference (DCAS);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3