Abstract
Cellulose nanofibers (CNFs) are part of organic crystallization macromolecular compounds that can be found in bacteria’s capsular polysaccharides and plant fibers. CNFs have a lot of potential as suitable matrices and advanced materials, and there have been a lot of studies done on them so far, both in terms of modifying them and inventing uses for them. In this paper, CNFs/reduced graphene oxide (GO) (rGO) nanocomposites were developed to create renewable, flexible, and cheap humidity sensors. The composite film’s performance as a humidity sensor was evaluated by analyzing the variations in capacitance at different humidity levels. The synthesized composite film underwent characterization using various analytical techniques, including scanning electron microscopy (SEM), UV (ultraviolet)/Vis (visible) spectrophotometry, Fourier transform infrared spectroscopy (FTIR), and thermomechanical analysis (TMA). The sensing mechanism is elucidated based on hydrophilic functional groups within the composite material. It has been observed that 3 wt% rGO/CNF composite is the best suited for humidity sensing among all other samples.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献