Elevated CPW-Fed Slotted Microstrip Antenna for Ultra-Wideband Application

Author:

Ghosh Chandan Kumar1,Roy Arabinda2,Parui Susanta Kumar2

Affiliation:

1. Department of Electronics and Communication Engineering, Dr. B. C. Roy Engineering College, Jemua Road, Fuljhore, Durgapur 713206, India

2. Department of Electronics and Communication Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711103, India

Abstract

Elevated-coplanar-waveguide- (ECPW-) fed microstrip antenna with inverted “G” slots in the back conductor is presented. It is modeled and analyzed for the application of multiple frequency bands. The changes in radiation and the transmission characteristics are investigated by the introduction of the slots in two different positions at the ground plane (back conductor). The proposed antenna without slots exhibits a stop band from 2.55 GHz to 4.25 GHz while introducing two slots on the back conductor, two adjacent poles appear at central frequencies of 3.0 GHz and 3.9 GHz, respectively, and the antenna shows the ultra-wideband (UWB) characteristics. The first pole appears at the central frequency of 3.0 GHz and covers the band width of 950 MHz, and the second pole exists at a central frequency of 3.90 GHz covering a bandwidth of 750 MHz. Experimental result shows that impedance bandwidth of 129% (S11<-10 dB) is well achieved when the antenna is excited with both slots. Compared to most of the previously reported ECPW structures, the impedance bandwidth of this antenna is increased and also the size of the antenna becomes smaller and more suitable for many wireless applications like PCS (1850–1990 MHz), WLAN (2.4–2.484 GHz), WiMAX (2.5–2.69 GHz and 5.15–5.85 GHz), and also X-band communication.

Funder

Bengal Engineering and Science University, India

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Printed Monopole Antenna with Tree-Like Radiating Patch and Flower Vase-Shaped Modified Ground Plane Useful for Wideband Applications;Journal of Electromagnetic Engineering and Science;2022-05-31

2. Performance Analysis of CPW Fed Multiband Microstrip Patch Antenna;Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016;2017-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3