In-Depth Analysis on the Fabry-Perot Effect of Cs2AgBiBr6 Double Perovskite-Based Solar Cells via Optical Path Length Modulation

Author:

Seo Kyeong-Ho1,Feng Junhao1,Bae Jin-Hyuk1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Republic of Korea

Abstract

Herein, the Fabry-Perot (F-P) interference of cesium silver bismuth bromide (Cs2AgBiBr6) double perovskite solar cells has been analyzed by modulating the optical path length of each layer step by step using the finite-difference time-domain (FDTD) method. The study was performed pass through three main steps. In step 1, for the fluorine-doped tin oxide (FTO)/Cs2AgBiBr6 double perovskite/gold (Au) architecture, we increased the absorption layer thickness from 150 to 600 nm at intervals of 150 nm and then predicted the optical performance including the absorption and reflection. In step 2, titanium dioxide (TiO2) layer was added between FTO electrode and Cs2AgBiBr6 double perovskite and then scaled from 20 to 200 nm at intervals of 20 nm. In the analysis process, short-circuit current density (Jsc) repeatedly fell and rose as the TiO2 layer thickness increased, and when TiO2 layer thickness is 100 nm, Jsc showed the highest value of 13.91 mA/cm2. In step 3, by applying a spiro-OMeTAD layer between the Cs2AgBiBr6 double perovskite absorption layer and Au electrode, the Jsc showed a continuous increase with slight decrease as the spiro-OMeTAD layer thickness increased from 110 to 200 nm, and when the spiro-OMeTAD layer thickness was 200 nm, Jscwas calculated as 14.57 mA/cm2, which is the highest value in the range. In the case of the optimal condition of full structure device, the Fabry-Perot resonance peaks were discovered at 477, 520, 572, 659, and 778 nm five wavelength regions, and the influence of the Fabry-Perot resonance on the generation rate inside the absorption layer on the 520, 572, and 659 nm monochromatic wavelength light was analyzed according to the position in the device. Our study approaches the Cs2AgBiBr6 double perovskite solar cell from an F-P cavity perspective and shows the light trapping phenomenon of the device according to the optical path length modulation.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3