Classification of Power Quality Disturbances in Solar PV Integrated Power System Based on a Hybrid Deep Learning Approach

Author:

Eristi Belkis1ORCID,Eristi Huseyin2ORCID

Affiliation:

1. Electrical and Energy Department, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey

2. Electrical and Electronics Engineering Department, Engineering Faculty, Mersin University, Mersin, Turkey

Abstract

Nowadays, due to the increase in the demand for electrical energy and the development of technology, the electrical devices have a more complex structure. This situation has increased the importance of concept of the power quality in the electrical power system. This paper presents a deep learning-based system to recognize the power quality disturbances (PQDs) in the solar photovoltaic (SPV) plant integrated with power system networks. The PQDs are analyzed using continuous wavelet transform (CWT) and image files are obtained from scalograms of CWT. Then, these image files are used to recognize PQDs with the help of a hybrid deep learning approach based on convolutional neural network (CNN), neighbor component analysis (NCA), and support vector machine (SVM). In this hybrid deep learning approach, the image files are given as input to AlexNet and GoogLeNet. The NCA is applied to the features obtained from the last dropout layer of each architecture. The distinctive features obtained from the NCA process are classified using the SVM algorithm. In order to evaluate the proposed approach, PQD data are obtained from a modified IEEE 13-bus test system including the SPV system. Several analyses and comparisons are carried out to verify the success of the proposed approach. It has been found that the proposed hybrid deep learning approach has the ability to accurately recognize the PQDs even if the SPV plant integrated power system has a negative effect on power quality.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3