An Efficiency Control Method Based on SFSM for Massive Crowd Rendering

Author:

Lyu Lei12ORCID,Zhang Jinling3,Fan Meilin1

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

2. Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan 250358, China

3. School of Information, Renmin University of China, Beijing 100872, China

Abstract

For massive crowds, users often have the need for interactive roaming. A good roaming effect can make the user feel immersed in the crowd, and the scenes need to be populated with crowds of people that make the environment both alive and believable. This paper proposes a method of efficiency control for massive crowd rendering. First, we devise a state machine mechanism based on self-feedback, which can dynamically adjust the accuracy of crowd model rendering according to the relationship between the speed of the system rendering and the speed the users expect. Second, we propose a movement frequency update method to perform the frequency of motion update based on the distance between the individual and the viewpoint. In addition, we propose a variable precision point sampling drawing strategy to render the individual with different sampling precision. The state machine system in this paper effectively integrates two core technologies for dynamically controlling the accuracy of the model, ensuring visual efficiency, improving the rendering efficiency, and satisfying the fluency of users’ roaming interaction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Large Crowd Rendering with Efficient Character and Instance Management on GPU;International Journal of Computer Games Technology;2019-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3