Image Enhancement Model Based on Deep Learning Applied to the Ureteroscopic Diagnosis of Ureteral Stones during Pregnancy

Author:

Miao Xiao-Yan1ORCID,Miao Xiao-Nan2,Ye Li-Yin3,Cheng Hong4

Affiliation:

1. Department of Radiation Oncology, The First People’s Hospital of Fuyang (Fuyang First Affiliated Hospital of Zhejiang Chinese Medical University Ben Giang College), Hangzhou, 311400, China

2. Department of Endocrinology, The First People’s Hospital of Fuyang (Fuyang First Affiliated Hospital of Zhejiang Chinese Medical University Ben Giang College), Hangzhou, 311400, China

3. Department of Urology, The First People’s Hospital of Fuyang (Fuyang First Affiliated Hospital of Zhejiang Chinese Medical University Ben Giang College), Hangzhou, 311400, China

4. Department of Ultrasound, The First People’s Hospital of Fuyang (Fuyang First Affiliated Hospital of Zhejiang Chinese Medical University Ben Giang College), Hangzhou, 311400, China

Abstract

Objective. To explore the image enhancement model based on deep learning on the effect of ureteroscopy with double J tube placement and drainage on ureteral stones during pregnancy. We compare the clinical effect of ureteroscopy with double J tube placement on pregnancy complicated with ureteral stones and use medical imaging to diagnose the patient’s condition and design a treatment plan. Methods. The image enhancement model is constructed using deep learning and implemented for quality improvement in terms of image clarity. In the way, the relationship of the media transmittance and the image with blurring artifacts was established, and the model can estimate the ureteral stone predicted map of each region. Firstly, we proposed the evolution-based detail enhancement method. Then, the feature extraction network is used to capture blurring artifact-related features. Finally, the regression subnetwork is used to predict the media transmittance in the local area. Eighty pregnant patients with ureteral calculi treated in our hospital were selected as the research object and were divided into a test group and a control group according to the random number table method, 40 cases in each group. The test group underwent ureteroscopy double J tube placement, and the control group underwent ureteroscopy lithotripsy. Combined with the ultrasound scan results of the patients before and after the operation, the operation time, time to get out of bed, and hospitalization time of the two groups of patients were compared. The operation success rate and the incidence of complications within 1 month after surgery were counted in the two groups of patients. Results. We are able to improve the quality of the images prior to medical diagnosis. The total effective rate of the observation group was 100.0%, which is higher than that of the control group (90.0%). The difference between the two groups was statistically significant ( P < 0.05 ). The adverse reaction rate in the observation group was 5.0%, which was lower than 17.5% in the control group. The difference between the two groups was statistically significant ( P < 0.05 ). The comparison results are then prepared. Conclusions. The image enhancement model based on deep learning is able to improve medical diagnosis which can assist radiologists to better locate the ureteral stones. Based on our method, double J tube placement under ureteroscopy has a significant effect on the treatment of ureteral stones during pregnancy, and it has good safety and is worthy of widespread application.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3