Oxidative Damage in Human Periodontal Ligament Fibroblast (hPLF) after Methylmercury Exposure

Author:

Nogueira Lygia S.12ORCID,Vasconcelos Carolina P.2,Mitre Geovanni Pereira3,da Silva Kataoka Maria Sueli3,Lima Marcelo O.4ORCID,de Oliveira Edivaldo H. C.25ORCID,Lima Rafael R.1ORCID

Affiliation:

1. Universidade Federal do Pará, Laboratório de Biologia Estrutural e Funcional, Belém, Pará, Brazil

2. Instituto Evandro Chagas, Laboratório de Citogenética e Cultura de Tecidos-SAMAM, Ananindeua, Pará, Brazil

3. Universidade Federal do Pará, Laboratório de Cultura Celular, Belém, Brazil

4. Instituto Evandro Chagas, Laboratório de Toxicologia-SAMAM, Ananindeua, Pará, Brazil

5. Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Brazil

Abstract

Human exposure to mercury (Hg) is primary associated with its organic form, methylmercury (MeHg), through the ingestion of contaminated seafood. However, Hg contamination is also positively correlated with the number of dental restorations, total surface of amalgam, and organic mercury concentration in the saliva. Among the cells existing in the oral cavity, human periodontal ligament fibroblast (hPLF) cells are important cells responsible for the production of matrix and extracellular collagen, besides sustentation, renewal, repair, and tissue regeneration. In this way, the present study is aimed at investigating the potential oxidative effects caused by MeHg on hPLF. Firstly, we analyzed the cytotoxic effects of MeHg (general metabolism status, cell viability, and mercury accumulation) followed by the parameters related to oxidative stress (total antioxidant capacity, GSH levels, and DNA damage). Our results demonstrated that MeHg toxicity increased in accordance with the rise of MeHg concentration in the exposure solutions (1-7 μM) causing 100% of cell death at 7 μM MeHg exposure. The general metabolism status was firstly affected by 2 μM MeHg exposure (43.8±1.7%), while a significant decrease of cell viability has arisen significantly only at 3 μM MeHg exposure (68.7±1.4%). The ratio among these two analyses (named fold change) demonstrated viable hPLF with compromised cellular machinery along with the range of MeHg exposure. Subsequently, two distinct MeHg concentrations (0.3 and 3 μM) were chosen based on LC50 value (4.2 μM). hPLF exposed to these two MeHg concentrations showed an intracellular Hg accumulation as a linear-type saturation curve indicating that metal accumulated diffusively in the cells, typical for metal organic forms such as methyl. The levels of total GSH decreased 50% at exposure to 3 μM MeHg when compared to control. Finally, no alteration in the DNA integrity was observed at 0.3 μM MeHg exposure, but 3 μM MeHg caused significant damage. In conclusion, it was observed that MeHg exposure affected the general metabolism status of hPLF with no necessary decrease on the cell death. Additionally, although the oxidative imbalance in the hPLF was confirmed only at 3 μM MeHg through the increase of total GSH level and DNA damage, the lower concentration of MeHg used (0.3 μM) requires attention since the intracellular mercury accumulation may be toxic at chronic exposures.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3