Affiliation:
1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2. Institute of Automotive Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract
Vehicle detection is one of the most important environment perception tasks for autonomous vehicles. The traditional vision-based vehicle detection methods are not accurate enough especially for small and occluded targets, while the light detection and ranging- (lidar-) based methods are good in detecting obstacles but they are time-consuming and have a low classification rate for different target types. Focusing on these shortcomings to make the full use of the advantages of the depth information of lidar and the obstacle classification ability of vision, this work proposes a real-time vehicle detection algorithm which fuses vision and lidar point cloud information. Firstly, the obstacles are detected by the grid projection method using the lidar point cloud information. Then, the obstacles are mapped to the image to get several separated regions of interest (ROIs). After that, the ROIs are expanded based on the dynamic threshold and merged to generate the final ROI. Finally, a deep learning method named You Only Look Once (YOLO) is applied on the ROI to detect vehicles. The experimental results on the KITTI dataset demonstrate that the proposed algorithm has high detection accuracy and good real-time performance. Compared with the detection method based only on the YOLO deep learning, the mean average precision (mAP) is increased by 17%.
Funder
Overseas Training Program for Universities of Jiangsu Province
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献