Phillyrin Mitigates Apoptosis and Oxidative Stress in Hydrogen Peroxide-Treated RPE Cells through Activation of the Nrf2 Signaling Pathway

Author:

Du Yuanyuan1ORCID,You Longtai1ORCID,Ni Boran2ORCID,Sai Na13ORCID,Wang Wenping1ORCID,Sun Mingyi1ORCID,Xu Rui1ORCID,Yao Yu1ORCID,Zhang Zhiqin1ORCID,Qu Changhai1ORCID,Yin Xingbin1ORCID,Ni Jian4ORCID

Affiliation:

1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China

2. Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100029, China

3. School of Pharmacy, Inner Mongolia Medical University, 010110 Hohhot, China

4. Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China

Abstract

Oxidative stress-induced dysfunction or apoptosis in retinal pigment epithelial (RPE) cells is an important cause of dry age-related macular degeneration (AMD). Although phillyrin has been shown to exert significant antioxidant effects, the underlying mechanism of action remains unclear. The purpose of this study was to investigate the protective effect of phillyrin on hydrogen peroxide- (H2O2-) induced oxidative stress damage in RPE cells and the potential mechanism involved. It was found that phillyrin significantly protected RPE cells from H2O2 cytotoxicity. Furthermore, phillyrin alleviated oxidative stress-induced apoptosis via inhibition of endogenous and exogenous apoptotic pathways. Compared with the H2O2-treated group, the expressions of cleaved caspase-3, cleaved caspase-9, cleaved polymerase (PARP), death receptor Fas, and cleaved caspase-8, as well as Bax/Bcl-2 ratio were decreased in RPE cells after the phillyrin intervention. In addition, phillyrin reversed the oxidative stress-induced reductions in superoxide dismutase (SOD) and glutathione (GSH) levels and annulled the elevations in reactive oxygen species (ROS) and malondialdehyde (MDA), thereby restoring oxidant-antioxidant homeostasis. Phillyrin treatment upregulated the expressions of cyclin E, cyclin-dependent kinase 2 (CDK2), and cyclin A and downregulated the expressions of p21 and p-p53, thereby reversing the G0/G1 cell cycle arrest in H2O2-treated RPE cells. Pretreatment with phillyrin also increased the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductases-1 (NQO-1) in RPE cells and inhibited the formation of Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 protein complex. Thus, phillyrin effectively protected RPE cells from oxidative stress through activation of the Nrf2 signaling pathway and inhibition of the mitochondria-dependent apoptosis pathway.

Funder

Training Programme of the Beijing Municipal Excellent Talents Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3