A Hidden Attack Sequences Detection Method Based on Dynamic Reward Deep Deterministic Policy Gradient

Author:

Zhang Lei1ORCID,Pan Zhisong1ORCID,Pan Yu1ORCID,Guo Shize1,Liu Yi2,Xia Shiming1ORCID,Zheng Qibin3ORCID,Li Hongmei3ORCID,Bai Wei1ORCID

Affiliation:

1. Command and Control Engineering College, Army Engineering University of PLA, Nanjing, China

2. Defense Innovation Institute, Beijing, China

3. Academy of Military Science, Beijing, China

Abstract

Attacker identification from network traffic is a common practice of cyberspace security management. However, network administrators cannot cover all security equipment due to the cyberspace management cost constraints, giving attackers the chance to escape from the surveillance of network security administrators by legitimate actions and to perform the attack in both physical domain and digital domain. Therefore, we proposed a hidden attack sequence detection method based on reinforcement learning to deal with the challenge through modeling the network administrators as an intelligent agent that learns their action policy from the interaction with the cyberspace environment. Following Deep Deterministic Policy Gradient (DDPG), the intelligent agent can not only discover the hidden attackers hiding in the legitimate action sequences but also reduce the cyberspace management cost. Furthermore, a dynamic reward DDPG method was proposed to improve defense performance, which set dynamic reward depending on the hidden attack sequences steps and agent’s check steps, compared to the fixed reward in common methods. Meanwhile, the method was verified in a simulated experimental cyberspace environment. Finally, the experimental results demonstrate that there are hidden attack sequences in cyberspace, and the proposed method can discover the hidden attack sequences. The dynamic reward DDPG shows superior performance in detecting hidden attackers, with a detection rate of 97.46%, which can improve the ability to discover hidden attackers and reduce the 6% cyberspace management cost compared to DDPG.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference32 articles.

1. Comparative analysis on TCP and UDP network traffic;Y. B. Zhang;Application Research of Computers,2010

2. Intrusion detection system: A comprehensive review

3. Research progress and prospect of network intrusion detection technology;Y. P. Jiang;Journal of Light Industry,2017

4. Intrusion prevention system design

5. An intrusion detection and prevention system in cloud computing: A systematic review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3