Disease Control and Prevention in Rare Plants Based on the Dominant Population Selection Method in Opportunistic Social Networks

Author:

Wu Jia1ORCID,Gou Fangfang1,Tian Xiaoming12ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. Hunan Botanical Garden, Changsha 410116, China

Abstract

The spread of seeds of rare and dangerous plants affects the regeneration, pattern, genetic structure, invasion, and settlement of plant populations. However, seed transmission is a relatively weak research link. The spread of plant seeds is not controlled by the communicator. Rather, this event results from the interaction between the host and the external environment determined by the mother. The way plants transmit and accept seeds is similar to how user nodes accept data transmission requests in social networks. Plants select the characteristics including seed size, maturity time, and gene matching, which are consistent with the size, delay, and keywords of the data received by the user. In this study, we selected rare and endangered Pterospermum heterophyllum as the research object and applied them to a social network. All plants were considered nodes and all seeds as transmitted data. This method avoids the influence of errors in actual sampling and statistical laws. By using historical information to record the reception of seeds, the Infection and Immunity Algorithm (IAIA) in opportunistic social networks was established. This method selects healthy plants through plant social populations and reduces the number of diseased plants. The experimental results show that the IAIA algorithm has a good effect in distinguishing dominant seedlings from seedlings with disease genes and realizes the selection of dominant plants in social networks.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3