Affiliation:
1. Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
2. Unit of INESC-ID Lisboa, IST Taguspark, Avenida Professor Cavaco Silva, 2744-016 Porto Salvo, Portugal
Abstract
Vital signs monitoring is pivotal not only in clinical settings but also in home environments. Remote monitoring devices, systems, and services are emerging as tracking vital signs must be performed on a daily basis. Different types of sensors can be used to monitor breathing patterns and respiratory rate. However, the latter remains the least measured vital sign in several scenarios due to the intrusiveness of most adopted sensors. In this paper, we propose an inexpensive, off-the-shelf, and contactless measuring system for respiration signals taking as region of interest the pit of the neck. The system analyses video recorded by a single RGB camera and extracts the respiratory pattern from intensity variations of reflected light at the level of the collar bones and above the sternum. Breath-by-breath respiratory rate is then estimated from the processed breathing pattern. In addition, the effect of image resolution on monitoring breathing patterns and respiratory rate has been investigated. The proposed system was tested on twelve healthy volunteers (males and females) during quiet breathing at different sensor resolution (i.e., HD 720, PAL, WVGA, VGA, SVGA, and NTSC). Signals collected with the proposed system have been compared against a reference signal in both the frequency domain and time domain. By using the HD 720 resolution, frequency domain analysis showed perfect agreement between average breathing frequency values gathered by the proposed measuring system and reference instrument. An average mean absolute error (MAE) of 0.55 breaths/min was assessed in breath-by-breath monitoring in the time domain, while Bland-Altman showed a bias of −0.03 ± 1.78 breaths/min. Even in the case of lower camera resolution setting (i.e., NTSC), the system demonstrated good performances (MAE of 1.53 breaths/min, bias of −0.06 ± 2.08 breaths/min) for contactless monitoring of both breathing pattern and breath-by-breath respiratory rate over time.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献