The Research of Fault Diagnosis of Nuclear Power Plant Based on ELM-AdaBoost.SAMME

Author:

Li Cheng12ORCID,Yu Ren1ORCID,Wang Tianshu1ORCID

Affiliation:

1. Naval University of Engineering, Wuhan 430033, China

2. China Nuclear Power Operation Technology Corporation, Ltd., Wuhan 430000, China

Abstract

A fault diagnosis framework based on extreme learning machine (ELM) and AdaBoost.SAMME is proposed in a nuclear power plant (NPP) in this paper. After briefly describing the principles of ELM and AdaBoost.SAMME algorithm, the fault diagnosis framework sets ELM algorithm as the weak classifier and then integrates several weak classifiers into a strong one using the AdaBoost.SAMME algorithm. Furthermore, some experiments are put forward for the setting of two algorithms. The results of simulation experiments on the HPR1000 simulator show that the combined method has higher precision and faster speed by improving the performance of weak classifiers compared to the BP neural network and verify the feasibility and validity of the ensemble learning method for fault diagnosis. Meanwhile, the results also indicate that the proposed method can meet the requirements of a real-time diagnosis of the nuclear power plant.

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3