Quantitative Detection of Financial Fraud Based on Deep Learning with Combination of E-Commerce Big Data

Author:

Liu Jian1ORCID,Gu Xin12,Shang Chao23

Affiliation:

1. School of Business, Sichuan University, Chengdu 610064, China

2. Chengdu Soft Innovation Intelligence Association, Chengdu 610023, China

3. Institute of New Structural Economics, Peking University, Beijing 100871, China

Abstract

At present, there are more and more frauds in the financial field. The detection and prevention of financial frauds are of great significance for regulating and maintaining a reasonable financial order. Deep learning algorithms are widely used because of their high recognition rate, good robustness, and strong implementation. Therefore, in the context of e-commerce big data, this paper proposes a quantitative detection algorithm for financial fraud based on deep learning. First, the encoders are used to extract the features of the behaviour. At the same time, in order to reduce the computational complexity, the feature extraction is restricted to the space-time volume of the dense trajectory. Second, the neural network model is used to transform features into behavioural visual word representations, and feature fusion is performed using weighted correlation methods to improve feature classification capabilities. Finally, sparse reconstruction errors are used to judge and detect financial fraud. This method builds a deep neural network model with multiple hidden layers, learns the characteristic expression of the data, and fully depicts the rich internal information of the data, thereby improving the accuracy of financial fraud detection. Experimental results show that this method can effectively learn the essential characteristics of the data, and significantly improve the detection rate of fraud detection algorithms.

Funder

Sichuan University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fraud Detection in E-Commerce Transactions Using Machine Learning Techniques and Quantum Networks;Advances in Computational Intelligence and Robotics;2024-08-02

2. Combatting Digital Financial Fraud through Strategic Deep Learning Approaches;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

3. E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review;Big Data Mining and Analytics;2024-06

4. Strategies for Integrating Deep Learning into Business Processes;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

5. Predictive Analytics for Budgeting and Management Using Deep Learning Techniques;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3