MFCFSiam: A Correlation-Filter-Guided Siamese Network with Multifeature for Visual Tracking

Author:

Li Chenpu1ORCID,Xing Qianjian1ORCID,Ma Zhenguo1ORCID,Zang Ke1

Affiliation:

1. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China

Abstract

With the development of deep learning, trackers based on convolutional neural networks (CNNs) have made significant achievements in visual tracking over the years. The fully connected Siamese network (SiamFC) is a typical representation of those trackers. SiamFC designs a two-branch architecture of a CNN and models’ visual tracking as a general similarity-learning problem. However, the feature maps it uses for visual tracking are only from the last layer of the CNN. Those features contain high-level semantic information but lack sufficiently detailed texture information. This means that the SiamFC tracker tends to drift when there are other same-category objects or when the contrast between the target and the background is very low. Focusing on addressing this problem, we design a novel tracking algorithm that combines a correlation filter tracker and the SiamFC tracker into one framework. In this framework, the correlation filter tracker can use the Histograms of Oriented Gradients (HOG) and color name (CN) features to guide the SiamFC tracker. This framework also contains an evaluation criterion which we design to evaluate the tracking result of the two trackers. If this criterion finds the SiamFC tracker fails in some cases, our framework will use the tracking result from the correlation filter tracker to correct the SiamFC. In this way, the defects of SiamFC’s high-level semantic features are remedied by the HOG and CN features. So, our algorithm provides a framework which combines two trackers together and makes them complement each other in visual tracking. And to the best of our knowledge, our algorithm is also the first one which designs an evaluation criterion using correlation filter and zero padding to evaluate the tracking result. Comprehensive experiments are conducted on the Online Tracking Benchmark (OTB), Temple Color (TC128), Benchmark for UAV Tracking (UAV-123), and Visual Object Tracking (VOT) Benchmark. The results show that our algorithm achieves quite a competitive performance when compared with the baseline tracker and several other state-of-the-art trackers.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference82 articles.

1. Intelligent multi-camera video surveillance: A review

2. Tracking all traffic: computer vision algorithms for monitoring vehicles, individuals, and crowds;B. Maurin;IEEE robotics & automation magazine,2005

3. Understanding and diagnosing visual tracking systems;N. Wang

4. Occlusion-aware real-time object tracking;X. Dong;IEEE Transactions on Multimedia,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning;Computational Intelligence and Neuroscience;2022-03-03

2. Combining Siamese Network and Correlation Filter for Complementary Object Tracking;Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3