A Smart Privacy-Preserving Learning Method by Fake Gradients to Protect Users Items in Recommender Systems

Author:

Luo Guixun1ORCID,Zhang Zhiyuan2ORCID,Zhang Zhenjiang3ORCID,Liu Yun2ORCID,Wang Lifu2ORCID

Affiliation:

1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

2. School of Electronic and Information Engineering, Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China

3. School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

In this paper, we study the problem of protecting privacy in recommender systems. We focus on protecting the items rated by users and propose a novel privacy-preserving matrix factorization algorithm. In our algorithm, the user will submit a fake gradient to make the central server not able to distinguish which items are selected by the user. We make the Kullback–Leibler distance between the real and fake gradient distributions to be small thus hard to be distinguished. Using theories and experiments, we show that our algorithm can be reduced to a time-delay SGD, which can be proved to have a good convergence so that the accuracy will not decline. Our algorithm achieves a good tradeoff between the privacy and accuracy.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3