Quantitative Damage and Fracture Mode of Sandstone under Uniaxial Load Based on Acoustic Emission

Author:

Xu Ying12,Zheng Qiangqiang12ORCID,Gao Xin12,Yang Rongzhou12,Ni Xian12,Wang Qianqian12

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Abstract

The damage degree and fracture mechanism of the rock are important to the bearing performance of the rock mass and the stability of the overlying structure. Most of the existing damage models for characterizing rock damage exclude the range of postpeak stress or do not consider the compaction and closure stage of the fracture, and the description of the quantitative damage of sandstone is not accurate enough. In addition, the description of the rock fracture mechanism under load is not exact enough. Aiming at the problem of quantitative damage and fracture mechanism of the loaded rock, this paper adopts acoustic emission (AE) to monitor the loading process of sandstone under uniaxial loading. In accordance with the characteristics of the AE signal, the loading stage of sandstone under uniaxial load is divided into three stages: initial hit stage, hit stability stage, and hit instability stage. By modifying the traditional damage model and combining the AE signals of the sandstone under the load, a modified damage mechanics model is obtained, which can fully express the entire loading stage. Furthermore, through the analysis of AE signals, the fracture mechanism of sandstone under uniaxial load is studied. The results show that the modified damage model can quantitatively describe the damage at different loading stages which include two areas including the fracture compaction closure stage and the postpeak stress stage. The failure and instability of sandstone under uniaxial load is mainly shear failure. The research results can provide a reference for the nondestructive testing of sandstone and engineering reliability in geotechnical engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3