Affiliation:
1. Center of Excellence of Aerospace Systems, Sharif University of Technology, Tehran 14588 33351, Iran
Abstract
Numerical study of pollutant emissions (NO and CO) in a Jet Stirred Reactor (JSR) combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP) conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC) method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS) equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM), and for turbulence chemistry interactions, finite rate-Eddy dissipation model are employed. Effects of pressure (3, 6.5 bars) and inlet temperature (408–573 K) over a range of residence time (1.49–3.97 ms) are numerically examined. A good agreement between the numerical and experimental distribution of NO and CO was found. The effect of decreasing the operating pressure on NO generation is much more than the effect of increase in the inlet temperature.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献