Information System Security Evaluation Algorithm Based on PSO-BP Neural Network

Author:

Zheng Qinghua1ORCID

Affiliation:

1. School of Business, Jinling Institute of Technology, Nanjing 211169, Jiangsu, China

Abstract

With the deepening of big data and the development of information technology, the country, enterprises, organizations, and even individuals are more and more dependent on the information system. In recent years, all kinds of network attacks emerge in an endless stream, and the losses are immeasurable. Therefore, the protection of information system security is a problem that needs to be paid attention to in the new situation. The existing BP neural network algorithm is improved as the core algorithm of the security intelligent evaluation of the rating information system. The input nodes are optimized. In the risk factor identification stage, most redundant information is filtered out and the core factors are extracted. In the risk establishment stage, the particle swarm optimization algorithm is used to optimize the initial network parameters of BP neural network algorithm to overcome the dependence of the network on the initial threshold, At the same time, the performance of the improved algorithm is verified by simulation experiments. The experimental results show that compared with the traditional BP algorithm, PSO-BP algorithm has faster convergence speed and higher accuracy in risk value prediction. The error value of PSO-BP evaluation method is almost zero, and there is no error fluctuation in 100 sample tests. The maximum error value is only 0.34 and the average error value is 0.21, which proves that PSO-BP algorithm has excellent performance.

Funder

Jinling Institute of Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3