Affiliation:
1. School of Energy and Electrical Engineering, Hohai University, Nanjing 210000, China
2. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 210000, China
3. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
Abstract
With the rapid development of Internet and big data, place retrieval has become an indispensable part of daily life. However, traditional retrieval technology cannot meet the semantic needs of users. Knowledge graph has been introduced into the new-generation retrieval systems to improve retrieval performance. Knowledge graph abstracts things into entities and establishes relationships among entities, which are expressed in the form of triples. However, with the expansion of knowledge graph and the rapid increase of data volume, traditional place retrieval methods on knowledge graph have low performance. This paper designs a place retrieval method in order to improve the efficiency of place retrieval. Firstly, perform data preprocessing and problem model building in the offline stage. Meanwhile, build semantic distance index, spatial quadtree index, and spatial semantic hybrid index according to semantic and spatial information. At the same time, in the online retrieval stage, this paper designs an efficient query algorithm and ranking model based on the index information constructed in the offline stage, aiming at improving the overall performance of the retrieval system. Finally, we use experiment to verify the effectiveness and feasibility of the place retrieval method based on knowledge graph in terms of retrieval accuracy and retrieval efficiency under the real data.
Funder
Research and Application of Intelligent Technology for Real-time Dispatching of Power Grid Based on Artificial Intelligence
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献