Multispectral Remote Sensing Utilization for Monitoring Chlorophyll-a Levels in Inland Water Bodies in Jordan

Author:

Hussein Nidal M.1ORCID,Assaf Mohammed N.2ORCID

Affiliation:

1. Department of Civil Engineering, University of Petra, Amman, Jordan

2. School of Natural Resources Engineering and Management, German Jordanian University, Amman, Jordan

Abstract

This study focuses on the utilization of multispectral satellite images for remote water-quality evaluation of inland water body in Jordan. The geophysical parameters based on water’s optical properties, due to the presence of optically active constituents, are used to determine contaminant level in water. It has a great potential to be employed for continuous and cost-effective water-quality monitoring and leads to a reliable regularly updated tool for better water sector management. Three sets of water samples were collected from three different dams in Jordan. Chl-a concentration of the water samples was measured and used with corresponding Sentinel 2 surface reflectance (SR) data to develop a predictive model. Chl-a concentrations and corresponding SR data were used to calibrate and validate different models. The predictive capability of each of the investigated models was determined in terms of determination coefficient (R2) and lowest root mean square error (RMSE) values. For the investigated sites, the B3/B2 (green/blue bands) model and the Ln (B3/B2) model showed the best overall predictive capability of all models with the highest R2 and the lowest RMSE values of (0.859, 0.824) and (30.756 mg/m3, 29.787 mg/m3), respectively. The outcome of this study on selected sites can be expanded for future work to cover more sites in the future and ultimately cover all sites in Jordan.

Funder

University of Petra

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3