Brain Tumor Detection and Classification Using IFF-FLICM Segmentation and Optimized ELM Model

Author:

Dash Suvashisa1,Siddique Mohammed1ORCID,Mishra Satyasis2ORCID,Gelmecha Demissie J.2ORCID,Satapathy Sunita3ORCID,Rathee Davinder Singh2,Singh Ram Sewak2

Affiliation:

1. Department of Mathematics, Centurion University of Technology and Management, Bhubaneswar, Odisha, India

2. Department of ECE, Adama Science and Technology University, Adama, Ethiopia

3. Department of Zoology, Centurion University of Technology and Management, Bhubaneswar, Odisha, India

Abstract

Brain cancer deaths are significantly increased in all categories of aged persons due to the abnormal growth of brain tumor tissues in the brain. The death rate can be controlled by accurate early stage brain tumor diagnosis. The detection and classification of brain tumors play a crucial role in early diagnosis and treatment planning. Brain tumor detection and classification have become challenging and time-consuming for domain-specific radiologists and pathologists in medical image analysis. So, automatic detection and classification are essential to reduce the time of diagnosis. In recent years, machine learning classifiers have played an essential role in automatically classifying brain tumors. In this research, an approach based on an improved fuzzy factor fuzzy local information C means (IFF-FLICM) segmentation and hybrid modified harmony search and sine cosine algorithm (MHS-SCA) optimized extreme learning machine (ELM) is proposed for brain tumor detection and classification. The IFF-FLICM algorithm is utilized to accurately segment the brain’s magnetic resonance (MR) images to identify the tumor regions. The Mexican hat wavelet transform is employed for feature extraction from the segmented images. The extracted features from the segmented regions are fed into the MHS-SCA-ELM classifier for classification. The MHS-SCA is proposed to optimize the weights of the ELM model to improve the classification performance. Five distinct multimodal and unimodal benchmark functions are considered for optimization to demonstrate the robustness of the proposed MHS-SCA optimization technique. The image Dataset-255 is considered for this study. The quality measures such as SSIM and PSNR are considered for segmentation. The proposed IFF-FLICM segmentation achieved a peak signal-to-noise ratio (PSNR) of 37.24 dB and a structural similarity index (SSIM) of 0.9823. The proposed MHS-SCA-based ELM model achieved a sensitivity, specificity, and accuracy of 98.78%, 99.23%, and 99.12%. The classification performance results of the proposed MHS-SCA-ELM model are compared with MHS-ELM, SCA-ELM, and PSO-ELM models, and the comparison results are presented.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3