Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning

Author:

Nalbant Muammer,Gokkaya Hasan,Toktaş İhsan

Abstract

Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm), various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm), and different feedrates (100, 130, 160, 190, 220 mm/min) on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN). Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG) model with 9 neurons in hidden layer has produced absolute fraction of variance(R2)values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3