Performance Assessment and Prediction for Superheterodyne Receivers Based on Mahalanobis Distance and Time Sequence Analysis

Author:

Sun Jinwen123ORCID,Lu Chen23ORCID,Wang Manxi1,Yuan Hang23ORCID,Qi Le23ORCID

Affiliation:

1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, No. 33, 085 Mailbox, Luoyang, Henan, China

2. School of Reliability and Systems Engineering, Beihang University, Beijing, China

3. Science & Technology on Reliability and Environmental Engineering Laboratory, Beijing, China

Abstract

The superheterodyne receiver is a typical device widely used in electronics and information systems. Thus effective performance assessment and prediction for superheterodyne receiver are necessary for its preventative maintenance. A scheme of performance assessment and prediction based on Mahalanobis distance and time sequence analysis is proposed in this paper. First, a state observer based on radial basis function (RBF) neural network is designed to monitor the superheterodyne receiver and generate the estimated output. The residual error can be calculated by the actual and estimated output. Second, time-domain features of the residual error are then extracted; after that, the Mahalanobis distance measurement is utilized to obtain the health confidence value which represents the performance assessment result of the most recent state. Furthermore, an Elman neural network based time sequence analysis approach is adopted to forecast the future performance of the superheterodyne receiver system. The results of simulation experiments demonstrate the robustness and effectiveness of the proposed performance assessment and prediction method.

Funder

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3