Application-Layer DDoS Attack Detection Using Explicit Duration Recurrent Network-Based Application-Layer Protocol Communication Models

Author:

Xie Bailin1ORCID,Wang Yu2ORCID,Wen Guogui1,Xu Xiaojun1

Affiliation:

1. School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, China

2. Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China

Abstract

Existing application-layer distributed denial of service (AL-DDoS) attack detection methods are mainly targeted at specific attacks and cannot effectively detect other types of AL-DDoS attacks. This study presents an application-layer protocol communication model for AL-DDoS attack detection, based on the explicit duration recurrent network (EDRN). The proposed method includes model training and AL-DDoS attack detection. In the AL-DDoS attack detection phase, the output of each observation sequence is updated in real time. The observation sequences are based on application-layer protocol keywords and time intervals between adjacent protocol keywords. Protocol keywords are extracted based on their identification using regular expressions. Experiments are conducted using datasets collected from a real campus network and the CICDDoS2019 dataset. The results of the experiments show that EDRN is superior to several popular recurrent neural networks in accuracy, F1, recall, and loss values. The proposed model achieves an accuracy of 0.996, F1 of 0.992, recall of 0.993, and loss of 0.041 in detecting HTTP DDoS attacks on the CICDDoS2019 dataset. The results further show that our model can effectively detect multiple types of AL-DDoS attacks. In a comparison test, the proposed method outperforms several state-of-the-art approaches.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3