Design of Sports Rehabilitation Training System Based on EEMD Algorithm

Author:

Wang Kaiwei12ORCID,Wang Zhenghui3,Ren Wu4ORCID,Yang Chunsheng5

Affiliation:

1. School of Physical Education, Xinxiang Medical University, Xinxiang, Henan 453003, China

2. Pukyong National University, Busan 608-737, Republic of Korea

3. The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China

4. College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China

5. Rehabilitation Department, The Third Affilitated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China

Abstract

Motor function rehabilitation training is to restore the motor function of hand injury to the maximum extent and meet the needs of patients’ daily behavior. At present, motor function evaluation and rehabilitation training work have disadvantages such as relying on the subjective experience of physicians, unable to quantitatively assess the loss of motor function, and single rehabilitation training method. Most of these methods only focus on the independent motion range of a single organ, lack of consideration of the constraint relationship between adjacent fingers, and do not build a visual model for it. To end this issue, for the purpose of sports rehabilitation, combined with the status and application of rehabilitation machines, this paper proposed a cycling rehabilitation training system based on physiological signal extraction of ensemble empirical mode decomposition (EEMD) algorithm. Results compared with the previous rehabilitation training, the muscle tension level of patients’ upper limbs decreased, and the strength of some muscles also increased. With the progress of rehabilitation training, the contralateral dominance coefficient showed an upward trend, which further confirmed the role of the proposed method in sports rehabilitation, and also provided a new idea for the evaluation of rehabilitation training effect of patients in the future.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3