Bearing Fault Vibration Signal Feature Extraction and Recognition Method Based on EEMD Superresolution Sparse Decomposition

Author:

Jian Zhang-1ORCID,Raja S. Selvakumar2ORCID,Nan Deng3,Kon Mawien4

Affiliation:

1. College of Computer Science, Yangtze University, Jingzhou, China

2. ECE Department, Gondar University, Gonder, Ethiopia

3. Great Wall Drilling Company of CNPC in South Sudan Branch, Juba, South Sudan

4. Engineering Department, Juba University, Juba, South Sudan

Abstract

This paper aims at the shortcomings of the current conventional processing methods of bearing fault vibration signals in improving signal-to-noise ratio, fine feature extraction, and recognition. A feature extraction and recognition method of abnormal vibration signals based on Ensemble Empirical Mode Decomposition (EEMD) superresolution sparse decomposition is designed. First of all, the superresolution sparse decomposition method is used to refine the set of IMF components of vibration signals after EEMD decomposition. Secondly, the features of the set are extracted and their corresponding energy entropy is calculated. Thirdly, the classification and recognition are carried out. Finally, the effectiveness and feasibility of the method are verified by experiments. It has been proved that this method can better realize the denoising and fine processing aimed at abnormal vibration signals. It has certain theoretical significance and applied value.

Funder

Science and Technology Research Project of Education Department of Hubei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3