Decentralized, Privacy-Preserving, Single Sign-On

Author:

Mir Omid1ORCID,Roland Michael2ORCID,Mayrhofer René2ORCID

Affiliation:

1. Johannes Kepler University Linz, LIT Secure and Correct Systems Lab, Linz, Austria

2. Johannes Kepler University Linz, Institute of Networks and Security, Linz, Austria

Abstract

In current single sign-on authentication schemes on the web, users are required to interact with identity providers securely to set up authentication data during a registration phase and receive a token (credential) for future access to services and applications. This type of interaction can make authentication schemes challenging in terms of security and availability. From a security perspective, a main threat is theft of authentication reference data stored with identity providers. An adversary could easily abuse such data to mount an offline dictionary attack for obtaining the underlying password or biometric. From a privacy perspective, identity providers are able to track user activity and control sensitive user data. In terms of availability, users rely on trusted third-party servers that need to be available during authentication. We propose a novel decentralized privacy-preserving single sign-on scheme through the Decentralized Anonymous Multi-Factor Authentication (DAMFA), a new authentication scheme where identity providers no longer require sensitive user data and can no longer track individual user activity. Moreover, our protocol eliminates dependence on an always-on identity provider during user authentication, allowing service providers to authenticate users at any time without interacting with the identity provider. Our approach builds on threshold oblivious pseudorandom functions (TOPRF) to improve resistance against offline attacks and uses a distributed transaction ledger to improve availability. We prove the security of DAMFA in the universal composibility (UC) model by defining a UC definition (ideal functionality) for DAMFA and formally proving the security of our scheme via ideal-real simulation. Finally, we demonstrate the practicability of our proposed scheme through a prototype implementation.

Funder

Johannes Kepler Open Access Publishing Fund

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference68 articles.

1. Authenticated Key Exchange Secure against Dictionary Attacks

2. Over 560 million passwords discovered in anonymous online database (2017);D. Cameron,2017

3. Zipf’s Law in Passwords

4. Yahoo says 1 billion user accounts were hacked;V. Goel,2016

5. Year of mega breaches & identity theft: findings from the breach level index;Gemalto,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Study on Authentication Systems;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

2. A Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain;IEEE Access;2023

3. Active Authentication Protocol for IoV Environment with Distributed Servers;Computers, Materials & Continua;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3